Lecture 15

In this lecture, we'll prove the Theorem stated in last lecture.

Theorem 1 Let G be a group and $H \triangleleft G$. The set $\frac{G}{H} = \{a \mid a \in G\}$ is a group under the operation $(a H) \cdot (b H) = a b H$.

(<u>moof</u> Since all can be represented by many elements, we must first make sure that the group operation is well-defined, i.e., if all = a'H for a, a' \in Gi and bH = b'H for b, b' \in Gi, then (aH)(bH) = abH = a'b'H = (a'H)(b'H).

Now is all= a'H = a a'= ah, for some h, EH

Inverse of $aH = a^{-1}H$ and associativity follows from associativity in G and $H \triangleleft G$. So $\frac{G}{H}$ is a group.

11

In a way, the group $\frac{f_1}{H}$ is causing a systema--tic collapse of elements in G. All the elements in the coset of H containing a collapse to

So H is dividing G into disjoint left cosets 2H, a, H, ..., an H'S and this is a "smaller" group than G and can give a lot of inform-- ation about G itself.

Theorem 2 If G is a finite group and
$$H \land G$$
, then
 $\left|\frac{G}{H}\right| = \frac{|G|}{|H|}$, i.e. the index of H is G.

Let's see some applications of quotient groups.as to how information about quotient groups con give us information about the group itself.

Theorem 3
$$G/Z(G)$$
 Theorem
Let G be a group and Z(G) be the center of G.
If $\frac{G}{Z(G)}$ by clic, then G is abelian.

Proof First of all since
$$Z(G) \land G = p G$$
 makes
sense.
Since G is yclic = $P G = \langle a Z(G) \rangle$ for
 $Z(G) = \langle x \rangle$
Some $a \in G$. We want to show that G is
abelian, so let $x, y \in G$ be arbitrary.
To show : $xy = yx$.
Since we have information only about G so
it makes sense to look at $xZ(G)$ and $yZ(G)$.
Since they are elements of G , so from (*)
 $x Z(G) = a^m Z(G)$, $y Z(G) = a^n Z(G)$, $m, n \in Z$.
So $x = a^m z_1$ for some $z_1 \in Z(G)$ and
 $y = a^n z_2$ for some $z_2 \in Z(G)$
So $xy = a^m z_1 \cdot a^n z_2 = a^m a^n \cdot z_1 \cdot z_2$ (as $Z(G)$
is the center)

So, $xy = a^n \cdot a^m \cdot z_1 \cdot z_2 = a^n \cdot a^m \cdot z_2 \cdot z_1 = a^n \cdot z_2 \cdot a^m \cdot z_1$ = yxand hence G is abelian.

Te

This shows the power of quotient groups, we analyzed a "smaller" group $\frac{G}{Z(G)}$ and from that,

we gathered information about a langer group G.
In fact is
$$G$$
 is cyclic then G is abelian, so $\frac{1}{Z(G)}$

$$G = Z(G) = P \quad G \quad \text{is trivial.}$$

Also, if G is non-abelian, then $G \quad \text{cannot be}$
cyclic.

