Lecture 15

In this lecture, we ill prove the Theorem stated in last lecture.

Theorem 1 Let G be a group and $H \triangleleft G$. The set $\frac{G}{H}=\{a H \mid a \in G\}$ is a group under the operation (aH). $(b H)=a b H$.

Proof Since aH can be represented by many elements, we must first make sure that the group operation is well-clefined, i.e., if $a H=a^{\prime} H$ for $a, a^{\prime} \in G$ and $b H=b^{\prime} H$ for $b, b^{\prime} \in G$, then

$$
(a H)(b H)=a b H=a^{\prime} b^{\prime} H=\left(a^{\prime} H\right)\left(b^{\prime} H\right) .
$$

Now if $a H=a^{\prime} H \Rightarrow a^{\prime}=a h_{1}$ for some $h_{1} \in H$
and $b^{\prime}=b h_{2}$ for some $h_{2} \in H$.
So $a^{\prime} b^{\prime} H=a h_{1} b h_{2} H=a h_{1} b H=a h_{1} H b$ as $H \nabla G$.

So $a^{\prime} b^{\prime} H=a b, H b=a H b=a b H$.
Thus the operation © well-defined.
What should be the identity? A natural guess is $e H=H$. So H io the identity ir $\frac{G}{H}$.

Inverse of $a H=a^{-1} H$ and associativity follows from associativity ie G and $H \triangleleft G$. So $\frac{G}{H}$ is a group.

In a way, the group $\frac{G}{H}$ is causing a system a-- tic collapse of elements in G. All the elements ie the coset of H containing a collapse to
a single element aH in $\frac{G}{H}$.

So the subgroup H becomes the identity ie $\frac{G}{H}$. This can be represented by the following schematic (though crude) diagram:-

So H is dividing G into disjoint left coseto $\left\{H, a_{1} H, \ldots, a_{n} H\right\}$ and this is a "smaller" group them G and can give a lot of inform-- ation about G itself.

Remark The procedure of quotienting out by a part of an object is a veiny common technique
in Mathematics.
Now that $\frac{G}{H}$ is a group, one can ask that what is if's order. We already know the answer, since $\frac{G}{H}$ is the set of left cosets of H in G, so from Lee. 10 , Corollary, we have

Theorem 2 If G is a finite group and $H \triangleleft G$, then $\left|\frac{G}{H}\right|=\frac{|G|}{|H|}$ ire. the index of H ii G.

Let's see some applications of quotient groups as to how information about quotient groups con give us information about the group itself.

Theorem $3 G / Z(G)$ Theorem
Let G be a group and $Z(G)$ be the center of G. If $\frac{G}{Z(G)}$ is cyclic, then G is abelian.

Proof First of all since $Z(G) \Delta G \Rightarrow \frac{G}{Z(G)}$ makes
sense.
Since $\frac{G}{Z(G)}$ is cyclic $\Rightarrow \frac{G}{Z(G)}=\langle a Z(G)\rangle$ for
some $a \in G$. We want to show that G is abelian, so let $x, y \in G$ be arbitrary.

To show: $x y=y x$.
Since we have information only about $\frac{G}{Z(G)}$ so it makes sense to look at $x Z(G)$ and $y Z(G)$. Since they are elements of $\frac{G}{Z(G)}$, so from $(*)$

$$
x Z(G)=a^{m} Z(G), y Z(G)=a^{n} Z(G), m, n \in \mathbb{Z} .
$$

So $x=a^{m} z_{1}$ for some $z_{1} \in Z(G)$ and

$$
y=a^{n} z_{2} \text { for some } z_{2} \in Z(a)
$$

So $x y=a^{m} z_{1} \cdot a^{n} z_{2}=a^{m} \cdot a^{n} \cdot z_{1} \cdot z_{2} \quad(a s z(a)$ is the center)

So, $x y=a^{n} \cdot a^{m} \cdot z_{1} \cdot z_{2}=a^{n} \cdot a^{m} \cdot z_{2} \cdot z_{1}=a^{n} \cdot z_{2} \cdot a^{m} \cdot z_{1}$

$$
=y x
$$

and hence G is abelian.

This shows the power of quotient groups, we analysed a "smaller" group $\frac{G}{2(G)}$ and from that,
we gathered information about a larger group G. Infect if $\frac{G}{z(G)}$ is cyclic then G is abelion, so $G=Z(G) \Rightarrow \frac{G}{Z(G)}$ is trivial.
Also, if G is non-abelion, then $\frac{G}{Z(G)}$ cannot be cyclic.
\qquad \times \qquad x \qquad -

